1. Required determinations: V_m, t, T_1, P_1 and ΔH

2. Calculate flow of standard volume

$$V_{std} = V_m \left(\frac{P_1 - \Delta P}{P_{std}} \right) \left(\frac{T_{std}}{T_1} \right) = V_m \left(\frac{P_1 - \Delta P}{P_{std}} \right) \left(\frac{298}{T_1} \right)$$

$Q_{std} = \frac{V_{std}}{t}$

$P_{std} = 760$ mm Hg or 101 k Pa

$$\sqrt{\Delta H \left(\frac{P_1}{P_{std}} \right) \left(\frac{298}{T_1} \right)}$$

Figures 3a and 3b illustrate the measurement process. Figure 3c shows the flow measurement during sampling:

1. Required determinations: T_3, P_3, and l [for specific P and T corrections];

 l [if average barometric pressure and seasonal average temperature have been incorporated at previous calibration.]